Compute Global Reactivity Index (GRI) Using Python

The Global Reactivity Index (GRI) is a concept Density Functional Theory (DFT)-Based descriptor that provides information on the chemical reactive of a molecule. Most researchers used these descriptors to study the behavior of molecules in different chemical environments, and they also help design drugs for a variety of uses. GRI parameters are as follows:
- Chemical potential (μ)
- Global Hardness (η)
- Chemical softness
- Electronegativity (χ),
- Electrophilicity index (Ω),
The parameters come from the border of molecular orbital energies using the same maximum covered molecular orbital (homo) and lowest non -irritating molecular orbital (lumo).
Organic and organometallic chemical reactive trends can be predicted using these parameters.
📥Theoretical background
These parameters can be calculated easily using simple python scripts, which save time and effort. For simplicity, we calculate GRI parameters using the following equations, with energies expressed in electron volts (Ev):
- Potential of Ionization (I) ≈ -ehomo
- Electron Affinity (a) ≈ —Elumo
Then, then,
- Electronegativity (χ) = (I + a)/2 = – (Ehomo + Elumo)/2
- Chemical potential (μ) = –Χ = (Ehomo + Elumo)/2
- Global Hardness (η) = (I – a)/2 = (elumo – ehomo)/2
- Global softness (s) = 1 / η
- Electrophilicity index (Ω) = μ² / (2η)
Now we can understand the basic concept. These parameters help us to predict:
- Reactive trends .
- Stability (higher chemical hardness → more stable molecules).
- Electrophicity/nucleophilicity (higher ω → stronger electrophile).
📥Software for calculating homo/lumo
The main ideas and mechanisms of working our code are based on orbital energies; Therefore, we need to calculate homo and lumo energies using a chemistry volume software package. I also include some popular choices.
Software |
Way |
Output format |
Free/open resources |
---|---|---|---|
Gaussian |
DFT, hf |
.log, .out |
✖ |
Orca |
DFT, hf |
.out |
✔ (free) |
Nwchem |
Dft |
.out |
✔ (open resource) |
PSI4 |
Dft |
.out, .dat |
✔ (open resource) |
Q-Chem |
Dft |
.out |
✖ |
These programs provide orbital energies after DFT or HF calculations. An example of a homo/lumo output snippet from orca is as follows:
ORBITAL ENERGIES
NO OCC E(Eh) E(eV)
...
45 2.0000 -0.2486 -6.7695 <-- HOMO
46 0.0000 0.0131 0.3564 <-- LUMO
📥Python Code for GRI calculation
Here, is a python script that takes The values of Ehomo and Elumo in EV And the Gri's descriptions are calculated. The output to the terminal can be obtained.
def compute_gri(E_HOMO, E_LUMO):
"""
Compute Global Reactivity Index (GRI) descriptors from the HOMO and LUMO energies.
Parameters:
E_HOMO (float): Energy of the HOMO orbital (eV).
E_LUMO (float): Energy of the LUMO orbital (eV).
Returns:
dict: Contains χ, μ, η, S, ω
"""
# Ionization potential and electron affinity
I = -E_HOMO
A = -E_LUMO
# Electronegativity (χ)
chi = (I + A) / 2
# Chemical potential (μ)
mu = -chi
# Global hardness (η)
eta = (I - A) / 2
# Global softness (S)
S = 1 / eta if eta != 0 else float('inf')
# Electrophilicity index (ω)
omega = mu**2 / (2 * eta) if eta != 0 else float('inf')
return {
'Ionization Potential (I)': I,
'Electron Affinity (A)': A,
'Electronegativity (χ)': chi,
'Chemical Potential (μ)': mu,
'Global Hardness (η)': eta,
'Global Softness (S)': S,
'Electrophilicity Index (ω)': omega
}
# Example usage
if __name__ == "__main__":
E_HOMO = -6.7695 # eV (example from ORCA)
E_LUMO = 0.3564 # eV
gri_results = compute_gri(E_HOMO, E_LUMO)
for param, value in gri_results.items():
print(f"{param}: {value:.4f} eV")
Homo/Lumo Extraction
Regular expressions can be used to parse the homo and lumo from log files obtained from chemical volume chemical packages.
import re
def extract_orbital_energies(orca_output_file):
with open(orca_output_file, 'r') as file:
content = file.read()
# Correct regex pattern for ORCA orbital energies block
pattern = r"ORBITAL ENERGIES.*?\n(-+\n.*?\n)(?:\s*\n|\Z)"
matches = re.findall(pattern, content, re.DOTALL)
if not matches:
raise ValueError("Orbital energies not found in file.")
# Take the last block of orbital energies (usually contains final results)
orbital_block = matches[-1]
orbitals = []
for line in orbital_block.strip().splitlines():
parts = line.split()
if len(parts) >= 5:
try:
occ = float(parts[1]) # Occupation number
energy_eV = float(parts[4]) # Energy in eV
orbitals.append((occ, energy_eV))
except ValueError:
continue # Skip lines that can't be parsed
# Find HOMO (highest occupied) and LUMO (lowest unoccupied)
homo = max((e for o, e in orbitals if o > 0), default=None)
lumo = min((e for o, e in orbitals if o == 0), default=None)
if homo is None or lumo is None:
raise ValueError("Could not identify HOMO and/or LUMO from orbital data.")
return homo, lumo
# Example usage
# E_HOMO, E_LUMO = extract_orbital_energies("molecule.out")
# print(f"HOMO: {E_HOMO:.4f} eV, LUMO: {E_LUMO:.4f} eV")
We can expect the outcome as follows the terminal:
Ionization Potential (I): 6.7695 eV
Electron Affinity (A): -0.3564 eV
Electronegativity (χ): 3.2066 eV
Chemical Potential (μ): -3.2066 eV
Global Hardness (η): 3.5629 eV
Global Softness (S): 0.2807 eV⁻¹
Electrophilicity Index (ω): 1.4413 eV
📥batch processing version (with a list of homo/lumo pairs)
Employed in many molecules (e.g., from a CSV file). First, the name of the CSV file molecules.csv
is created as follows:
name,E_HOMO,E_LUMO
Molecule 1,-6.7695,0.3564
Molecule 2,-5.1234,0.7890
Molecule 3,-7.0000,-0.2000
Says the python script gri_batch.py
):
import csv
def compute_gri(E_HOMO, E_LUMO):
I = -E_HOMO
A = -E_LUMO
chi = (I + A) / 2
mu = -chi
eta = (I - A) / 2
S = 1 / eta if eta != 0 else float('inf')
omega = mu**2 / (2 * eta) if eta != 0 else float('inf')
return {
'Ionization Potential (I)': I,
'Electron Affinity (A)': A,
'Electronegativity (χ)': chi,
'Chemical Potential (μ)': mu,
'Global Hardness (η)': eta,
'Global Softness (S)': S,
'Electrophilicity Index (ω)': omega
}
# Read input from CSV
def read_molecule_data(csv_filename):
molecules = []
with open(csv_filename, mode='r', newline='') as file:
reader = csv.DictReader(file)
for row in reader:
try:
molecules.append({
'name': row['name'],
'E_HOMO': float(row['E_HOMO']),
'E_LUMO': float(row['E_LUMO'])
})
except ValueError:
print(f"Skipping row due to invalid data: {row}")
return molecules
# Main batch processing
if __name__ == "__main__":
input_csv = 'molecules.csv'
molecule_data = read_molecule_data(input_csv)
for mol in molecule_data:
print(f"\nResults for {mol['name']}:")
results = compute_gri(mol['E_HOMO'], mol['E_LUMO'])
for param, value in results.items():
print(f"{param}: {value:.4f} eV")
When you run the gri_batch.py
In the terminal, you will get output of something as follows:
Results for Molecule 1:
Ionization Potential (I): 6.7695 eV
Electron Affinity (A): -0.3564 eV
Electronegativity (χ): 3.2066 eV
Chemical Potential (μ): -3.2066 eV
Global Hardness (η): 3.5629 eV
Global Softness (S): 0.2807 eV⁻¹
Electrophilicity Index (ω): 1.4413 eV
Results for Molecule 2:
Ionization Potential (I): 5.1234 eV
Electron Affinity (A): -0.7890 eV
Electronegativity (χ): 2.1672 eV
Chemical Potential (μ): -2.1672 eV
Global Hardness (η): 2.9562 eV
Global Softness (S): 0.3383 eV⁻¹
Electrophilicity Index (ω): 0.7944 eV
Results for Molecule 3:
Ionization Potential (I): 7.0000 eV
Electron Affinity (A): 0.2000 eV
Electronegativity (χ): 3.6000 eV
Chemical Potential (μ): -3.6000 eV
Global Hardness (η): 3.4000 eV
Global Softness (S): 0.2941 eV⁻¹
Electrophilicity Index (ω): 1.9059 eV
Gri calculations are sensitive. Manu -Manu -verification may be required in some cases if you doubt the outcomes otherwise the code will fully automate your calculation based on homo input and lumo energies.
Conclusion
The global reactivity index is a powerful tool for predicting molecular behavior based on the boundaries of orbital energies. Generally, we use DFT calculations from software such as Orca, PSI4, or Gaussian. In this tutorial, we carefully created the Python Code for post processing. Large molecular datasets can also be processed. This work flow includes volume chemistry and scripting to simplify computational reactive assessment for research in organic, non -organic, and material chemistry.